Asymmetric Dihydroxylations of 1-Substituted (E)- and (Z)-3-Methylpent-2 en-4-ynes: Full Compliance with the Sharpless Mnemonic Re-established and Embellished

Heike Burghart-Stoll,[†] Oliver Böhnke,[‡] and Reinhard Brückner*^{,†}

Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg im Breisgau, Germany, and Gymnasium Goetheschule, Schützenstr. 1, 37574 Einbeck, Germany

reinhard.brueckner@organik.chemie.uni-freiburg.de

Received December 17, 2010

LETTERS 2011 Vol. 13, No. 5 1020–1023

ORGANIC

ABSTRACT

Asymmetric dihydroxylations ("ADs") of the pentenynyl chlorides (E)- and (Z)-1 or the pentenyne-based ester (Z)-3 in the presence of (DHQ)₂-containing ligands delivered diol stereoisomers (2R,3S)-2, (2R,3R)-2, and (3S,4R)-4, respectively. The ADs of pentenynyl ethers (E)-10 and (Z)-12, respectively, have the same stereochemical preference under analogous conditions; these reattributions correct previous reports of the contrary. The Sharpless mnemonic rationalizes all these results implying that each substrate prefers a Sharpless/Norrby instead of a Chapleur orientation in the transition state.

Recently¹ we have shown that in the presence of Sharpless' ligands (DHQ)2PHAL (which is responsible for stereocontrol effected by AD-mix α^2) or (DHQ)₂AQN³ the 1-chlorinated 3-methylpent-2-en-4-ynes (E) - and (Z) -1 are dihydroxylated asymmetrically.4This furnished chloro-

diols $(2R,3S)$ - and $(2R,3R)$ -2, respectively, in yields of up to 73% (Scheme 1). Enantioselectivities reached 85% ee with (E) -1 as the substrate and 91% *ee* starting from (Z) -1. The configurational proof in the (E) -series was based on an X-ray structural analysis and the proof in the (Z)-series on a correlation with a compound derived from the (E)-series.

Another 1-substituted 3-methylpent-2-en-4-yne, namely ester (Z) -3, reacted with the same facial selectivity with Sharpless' AD-mix α as chloride (Z)-1, proceding via dihydroxyester (3S,4R)-4 directly⁵ to the hydroxylactone $(4S, 5R)$ -5⁶ (Scheme 2). The correct configuration of the latter was not recognized correctly⁷ before we found that ester (Z) -6 and AD-mix α gave the *identically* configured lactone (4S,5R)-8 via dihydroxyester (3S,4R)-7. ⁸ This was shown by an X-ray analysis of the derived bromobenzoate

[†] Albert-Ludwigs-Universität.

[‡] Gymnasium Goetheschule.

⁽¹⁾ Burghart-Stoll, H.; Kapferer, T.; Brückner, R. Org. Lett. (DOI: 10.1021/OL103061g).

^{(2) (}a) Sharpless, K. B.; Amberg,W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768–2771 (in the presence of MeSO_2NH_2). (b) Footnote 6 in Jeong, K.-S.; Sjö, P.; Sharpless, K. B. Tetrahedron Lett. 1992, 33, 3833–3836 (in the absence of MeSO_2NH_2).

^{(3) (}a) Becker, H.; Sharpless, K. B. Angew. Chem. 1996, 108, 447–449. (b) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 448–451.

^a K₃Fe(CN)₆ (3.0 equiv), K₂OsO₂(OH)₄ (1.0 mol %), dihydroquinidine-based ligand (2.0 mol %), buffer (3.0 equiv each of $NAHCO₃$ and K_2CO_3), and $MeSO_2NH_2$ (1.0 equiv).

 $(4S, 5R)$ -9. A *proof* of the steric course of the AD reaction of ester (Z) -3 was obtained by an independent synthesis¹ of the same lactone (4S,5R)-5 from the chlorodiol (2R,3R)-2.

Disconcertingly, the stereoselectivity of our AD (E) -1 + AD-mix $\alpha \rightarrow (2R,3S)$ -2 differed from the selectivities reported for ADs of certain ethers, which share an (E) configured methylpentenyne with our substrate: AD-mix α was claimed to convert ethers (E)-10a-d into diols (2R,3R)-11a-d (Scheme 3, top).⁹ Similarly, our ADs (Z) -1 + ADmix $\alpha \rightarrow (2R,3R)$ -2 and (Z)-3 + AD-mix $\alpha \rightarrow (3S,4R)$ - $4/(4S, 5R)$ -5 had opposite stereoselectivities as the ADs of several ethers, which share a (Z) -configured methylpentenyne with our substrates: $AD-mix \alpha$ allegedly transforms ethers (Z) -12a and b into dihydroxyethers $(2R,3S)$ -13a and **b**, respectively (Scheme 4, bottom).¹⁰ Incidentally Nakatani et al. (Scheme 3, bottom) contradicted this (without recognizing it) when they dihydroxylated the PMB ether (E) -10d in the presence of AD-mix β and isolated diol

(5) Method: (a) Harcken, C.; Brückner, R. Angew. Chem. 1997, 109, 2866–2868. Harcken, C.; Brückner, R. Angew. Chem., Int. Ed. 1997, 36, 2750–2752. (b) Kapferer, T.; Brückner, R. Eur. J. Org. Chem. 2006, 2119–2133.

(6) The enantiopurity of this specimen was determined by chiral HPLC after tert-butyldiphenylsilylation (see Supporting Informations).

(7) Böhnke, O. Dissertation, Universität Freiburg, 2002, pp 63, 124, 151.

(8) Kapferer, T.; Brückner, R.; Herzig, A.; König, W. A. $Chem =$ Eur. J. 2005, 11, 2154–2162.

Scheme 2. AD Reactions of the Methylpentenyne-Based Ester (Z) -3 and the Related Ester (Z) -6⁸

 a K₃Fe(CN)₆ (3.0 equiv), K₂OsO₂(OH)₄ (2.0 mol %), (DHQ)₂PHAL (10 mol %), K_2CO_3 (3.0 equiv), and $MeSO_2NH_2$ (1.0 equiv). ^b Prepared from (Z)-3: $[\alpha]_D^{20} = -4.9$ ($c = 0.83$ in CHCl₃); prepared from (2R,3R)-2: $[\alpha]_{D}^{20}$ = -5.6 (c = 0.5 in CHCl₃). ^cK₃Fe(CN)₆ (3.0 equiv), K₂OsO₂- $(OH)₄ (0.8 mol %), (DHQ)₂PHAL (1.6 mol %), K₂CO₃ (3.0 equiv), and$ $MeSO₂NH₂$ (1.0 equiv).

Scheme 3. AD Reactions of the Methylpentenyne-Based Ethers (E) -10⁹ and (E) -12¹⁰ from the Literature^{11,12}

 $(2R,3R)$ -11d, which was dextrorotatory.¹¹ According to Tietze and Görlitzer the same diol $(2R,3R)$ -11d stemmed from (E) -10d and AD-mix α but was levorotatory.⁹

Ancillary findings by Tietze and Görlitzer increased our worries. Ethers (E) -12a-d and AD-mix α reportedly gave the diols $(2S,3S)$ -13a-d (Scheme 3, center);¹⁰ this amounts to a *reversal* of the asymmetric induction in the ADs (E) - $10a-d + AD-mix \alpha \rightarrow (2R,3R)$ -11a-d⁹ (Scheme 3, top). Why an sp-bonded arene moiety in (E) -12a-d instead of an sp-bonded H-atom in (E) -10a-d should have such an

^{(4) (}a) Lohray, B. B. Tetrahedron: Asymmetry 1992, 3, 1317–1349. (b) Johnson, R. A.; Sharpless, K. B. In Asymmetric Catalysis in Organic $Synthesis$; Ojima, I., Ed.; VCH: New York, 1993; pp 227-272; (c) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547. (d) Poli, G.; Scolastico, C. Methoden Org. Chem. (Houben- $Weyl$, 4th ed. $-$, Vol. E21e; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1995; pp 4547-4598. (e) Salvadori, P.; Pini, D.; Petri, A. Synlett 1999, 1181-1190. (f) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 357-389. (g) Bolm, C.; Hildebrand, J. P.; Muñiz, K. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000; pp 399-428. (h) Krief, A.; Colaux-Castillo, C. Pure Appl. Chem. 2002, 74, 107–113. (i) Kolb, H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, pp 275-298. (j) Noe, M. C.; Letavic, M. A.; Snow, S. L.; McCombie, S. Org. React. 2005, 66, 109–625. (k) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006, 1725–1756.

⁽⁹⁾ Tietze, L. F.; Görlitzer, J. Liebigs Ann. Recl. 1997, 2221-2225.

⁽¹⁰⁾ Tietze, L. F.; Görlitzer, J. Synthesis 1997, 877-885.

^{(11) (}a) Nakatani, K.; Okamoto, A.; Saito, I. Angew. Chem. 1997, 109, 2881–2884. Nakatani, K.; Okamoto, A.; Saito, I. Angew. Chem., Int. Ed. 1997, 36, 2794–2797. (b) Nakatani, K.; Okamoto, A.; Matsuno, T.; Saito, I. J. Am. Chem. Soc. 1998, 120, 11219–11225.

⁽¹²⁾ The AD reaction of the para-methoxybenzoate of the alcohol, which underlies the ethers (E) -10a-d, in the presence of AD-mix α gave a levorotatory triol with 86% ee; the "configuration of the major enantiomer was assigned tentatively by application of the Sharpless mnemonic" as $(2S,3S)$, i.e. differently than Tietze's $(2R,3R)$ -10a-d: Alvarez, S.; Alvarez, R.; de Lera, A. R. Tetrahedron Asymmetry 2004, 15, 839–846. Our results are analogous and therefore corroborate de Lera's conclusion.

Scheme 4. AD Reactions of the Methylpentenyne-Based Ethers (Z)-10⁹ and (Z)-12¹⁰ from the Literature¹⁴

effect was not clear.¹³ The same structural change seemed to swap the asymmetric inductions in the AD-mix α -mediated dihydroxylations of the C_{sp}-arylated ethers (Z) -12a,b $[\rightarrow (2R,3S)$ -13a and b, respectively;¹⁰ Scheme 4, bottom] compared to the C_{sp} -unsubstituted ethers (Z)-10a,b $[\rightarrow (2R,3S)$ -11a and b, respectively;⁹ Scheme 4, top].

The pivotal role of Sharpless ADs in organic synthesis⁴ compelled us to check these matters by correlating selected Tietze/Görlitzer diols with ours. We showed both for ether (E)-10a and ether (Z)-12a,b-i.e., for representative

(14) The AD reaction of the para-methoxybenzoate of the alcohol, which underlies the ethers (Z)-10a,b, with AD-mix α gave a levorotatory triol with 56% ee; the "absolute configuration of the major enantiomer was assigned tentatively by application of the Sharpless mnemonic" as $(2S,3R)$, i.e. differently than Tietze's $(2R,3S)$ -12a, b: Alvarez, S.; Alvarez, R.; de Lera, A. R. Tetrahedron Asymmetry 2004, 15, 839–846. Our results are analogous and therefore corroborate de Lera's conclusion.

(15) We proved the steric course of Tietze's and Görlitzer's transformation⁹ (E)-12a + AD-mix $\alpha \rightarrow (-)$ -(2S,3S)-13a (Scheme 3, center) by gaining the enantiomeric product $(+)$ - $(2R,3R)$ -13a by a Sonogashira coupling between diol $(+)$ - $(2R,3R)$ -11a (proof of the 3D structure of the latter: Scheme 5, top) and 1-iodo-2,5-dimethoxy-3,4,6 trimethylbenzene.¹⁸ (2S,3S)-**13a** (>95% ee) exhibited $[\alpha]_{\text{D}_0}^{20} = -13.5$ (c = 1 in CHCl₃) whereas (2R,3R)-13a (92% ee) exhibited $\left[\alpha\right]_{D}^{20}$ = +11.4 (c $= 0.3$ in CHCl₃); i.e., these compounds had inverse rotational powers.

(16) The steric course of the transformation (E) -12b + AD-mix $\alpha \rightarrow$ (2S,3S)-13b (Scheme 3, center) was established unambiguously by acetonide formation, desilylation, condensation with $(-)$ -camphanoyl chloride, and an X-ray structural analysis of the resulting ester.¹⁰

(17) Differently than stated¹⁰ no proof was provided for the stereoselectivity of the transformation (E) -12c + AD-mix $\alpha \rightarrow (2S,3S)$ -13c (Scheme 3, center): (2S,3S)-13c had been converted into what was drawn as the *S*-enantiomer of 6-(benzyloxy)-2,5,7,8-tetramethylchromane-2-carbaldehyde in seven steps,¹⁰ but this assignment was not corroborated experimentally.

Scheme 5. AD Reactions Reassigned I: Proof That (E)-10a and AD-Mix α React Differently than Published

 a [α] $_{\text{D}}^{20}$ = +23.6 (c = 1.1 in CHCl₃). ^b Compatibility of this sense of the specific rotation with the depicted configuration is excluded by our work. $c [\alpha]_D^{20} = -22.0$ ($c = 1.0$ in CHCl₃).

substrates-that the stereodescriptors of the resulting diols must be reversed (Schemes 5 and 6, respectively). Moreover we proved the correctness of the stereodescriptors of diol $(2S,3S)$ -13a¹⁵⁻¹⁸ obtained from ether (E) -12a and of diol $(2S,3R)$ -11a^{19,20} obtained from ether (Z) -10a.

Chlorodiol $(2S,3R)-2¹$ and sodium 4-methoxyphenoxide in ethanol²¹ at reflux gave the PMP-containing diol (2R,3R)-11a (Scheme 5). It was dextrorotatory. Diol 11a prepared from the PMP ether (E) -10a and AD-mix α was levorotatory⁹ and therefore (2S,3S)-11a.²² By analogy, diols $(-)$ -11b-c of Scheme 3 should be $(2S,3S)$ -configured, too.

(preparation: Scheme 6, top) was dextrorotatory: $(-)$ - $(2S,3R)$ -11a $(82\% \text{ ee})$ showed $[\alpha]_{\text{D}_2}^{20} = -20.0 \text{ (c = 1 in CHCl}_3)$ while $(2R, 3S)$ -11a $(92\% \text{ ee})$ showed $[\alpha]_{\text{D}}^{20} = +22.3 \text{ (}c = 0.37 \text{ in } CHCl_3).$

(20) The facial selectivity of the functionalizations of (Z) -10a,b with AD-mix α (Scheme 4, top⁹) lacked experimental support. The resulting diols were Sonogashira-coupled to provide diols⁹ $13a$,b with the same *relative* configurations as the ones obtained from (Z) -12a,b and AD-mix α in one step (Scheme 4, bottom¹⁰). However, differently than the authors believed (ref 10 and footnote 2 therein) no specific rotations were measured on the Sonogashira route (ref 22b). This left the absolute configuration of these specimens of $(-)$ -ul-11a and $(-)$ -ul-b unproved.

(21) Procedure: Gandolfi, C. A.; Di Domenico, R.; Spinelli, S.; Gallico, L.; Fiocchi, L.; Lotto, A.; Menta, E.; Borghi, A.; Rosa, C. D.; Tognella, S. J. Med. Chem. 1995, 38, 508–525.

(22) (a) The 3D structure of the dihydroxylation product $(-)$ -(" $2R,3R$ ")-**11a** should have emerged from the X-ray analysis of crystals of the monosulfonate derived with (+)-camphorsulfonyl chloride. The of the monosulfonate derived with $(+)$ -camphorsulfonyl chloride. ORTEP plot depicted the compound as 14 (ref 22b, p 72), but the corresponding valence formula was flawed as 15 (ref 22b; p 70) and published as such.⁹ (b) Görlitzer, J. *Dissertation*, Universität Göttingen, 1997.

(23) (a) Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schröder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (b) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lübben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585–4588. (c) Reference 2b. (d) Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc. 1994, 116, 1278–1291. (e) Vanhessche, K. P. M.; Sharpless, K. B. J. Org. Chem. 1996, 61, 7978–7979. (f) Fristrup, P.; Tanner, D.; Norrby, P.-O. Chirality 2003, 15, 360–368.

⁽¹³⁾ There are AD reactions, however, where remote anisyl groups modify the extent of enantiocontrol, albeit not its direction: (a) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. Tetrahedron Lett. 1995, 36, 3481– 3484. (b) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805–10816. (c) Corey, E. J.; Noe, M. C.; Guzman-Perez, A. J. Am. Chem. Soc. 1995, 117, 10817–10824. (d) Corey, E. J.; Noe, M. C.; Ting, A. Y. Tetrahedron Lett. 1996, 37, 1735–1738. (e) Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 11038–11053.

^{(18) (}S)-6-(Benzyloxy)-2,5,7,8-tetramethylchromane-2-carbalde-

hyde is dextrorotatory (589 nm, $c = 5.2$ in CHCl₃) according to Cohen, N.; Lopresti, R. J.; Saucy, G. J. Am. Chem. Soc. 1979, 101, 6710–6716. (19) We proved the steric course of Tietze's and Görlitzer's transformation¹⁰ (Z)-10a + AD-mix $\alpha \rightarrow (-)$ -(2S,3R)-11a (Scheme 4, top) by establishing that the enantiomeric product (2R,3S)-11a

Scheme 6. AD Reactions Reassigned II: Proof That (Z)-12a and AD-Mix α React Differently than Published

 $a[\alpha]_0^{20} = +22.3 (c = 0.37 \text{ in CHCl}_3).$ $b[\alpha]_D^{20} = +13.6 (c = 0.33 \text{ in CHCl}_3).$ Compatibility of this sense of the specific rotation with the depicted configuration is excluded by our work. $d[\alpha]_D^{(2)} = -12.6$ ($c = 1.0$ in CHCl₃).

According to Scheme 6 chlorodiol $(2S,3S)$ -2¹ was converted via its PMP-ether $(2R,3S)$ -11a²¹ and a Sonogashira coupling with 1-iodo-2,5-dimethoxy-3,4,6-trimethylbenzene into the dextrorotatory diol $(2R,3S)$ -13a. Diol 13a prepared from the arylated PMP-ether (Z) -12a and AD- $\lim_{\alpha \to \infty} \alpha$ was levorotatory¹⁰ and hence (2S,3R)-configured.

In summary it has been shown that all heterosubstituted (E) - and (Z) -methylpentenynes, which have been *vic*-dihydroxylated to date under the influence of DHQ-containing ligands are attacked as if preferring a "Sharpless/Norrby orientation" in any of the Sharpless-mnemonic transition states²³ 16-19 (Figure 1) such that steric hindrance in zone 1, which is (the most) repulsive, is minimized.

With respect to alkenes containing a trisubstituted $C=C$ bond we reduced the number of "Chapleur oriented"²⁴ AD substrates by (E) -10a-d and (Z) -12a,b. When/if one does

(24) A "Chapleur orientation" in the transition state of an AD represents the optimum of maximized bonding in zone 2 and minimized strain in zone 1.

(25) Moitessier, N.; Henry, C.; Len, C.; Chapleur, Y. J. Org. Chem. 2002, 67, 7275–7282.

(26) Shao, H.; Rueter, J. K.; Goodman, M. J. Org. Chem. 1998, 63, 5240–5244.

(27) (a) Menthyl angelates undergo ADs with stereoselectivities matching "Sharpless/Norrby orientations" in the transition state: Torres-Valencia, J. M.; Cerda-García-Rojas, C. M.; Joseph-Natan, P. Tetrahedron: Asymmetry 1998, 9, 757–764. (b) The same is true for disubstituted angelates: Nicolaou, K. C.; Yue, E. W.; La Greca, S.; Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De Riccardis, F. Chem.--Eur. J. 1995, 1, 467-494.

(28) (a) AD stereoselectivities of monocarbamoylated alkyl angelates in line with "Sharpless/Norrby orientations" in the transition state but without proofs: Claudel, S.; Olszewski, T. K.; Mutzenardt, P.; Aroulanda, C.; Coutrot, P.; Grison, C. Tetrahedron 2006, 62, 1787–1798. (b) dto. regarding ADs of a mono- and a dimethylated ethyl angelate: Stritzke, K.; Schulz, S.; Nishida, R. Eur. J. Org. Chem. 2002, 3884–3892.

(29) The diols from AD-mix α and 2-(trimethylsilyl)ethyl angelate (Liu, H.; Jensen, K. G.; Tran, L. M.; Chen, M.; Zhai, L.; Olsen, C. E.; Søhoel, H.; Denmeade, S. R.; Isaacs, J. T.; Christensen, S. B. Phytochemistry 2006 , 67, 2651-2658) or a monosubstituted angelate [Xie, W.; Ding, D.; Zi, W.; Li, G.; Ma, D. Angew. Chem. 2008, 120, 2886-2890; Xie, W.; Ding, D.; Zi, W.; Li, G.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 2844-2848 (Supporting Information)] were drawn-without proofs-as if emerging from "Chapleur orientated" substrates.

(30) Curran, D. P.; Ko, S.-B. J. Org. Chem. 1994, 59, 6139–6141.

Figure 1. Stereoselectivities of ADs of standard substrates with a trisubstituted $C=C$ bond in the presence of DHQ-containing ligands (top; DHQD-containing ligands attack from downside) and of isobutyl angelate in the presence of $(DHQD)_2PHAL$ (bottom).

not accept the revised configuration²⁵ of the diol produced from isobutyl angelate and AD-mix β ,²⁶ this implies a "Chapleur orientation" 20^{25} (Figure 1) in the transition state, $27-29$ the only AD reaction affecting a "Chapleur oriented" trisubstituted $C=C$ bond, of which we are aware may concern an α -alkylidenelactone.³⁰ It seems reasonable, accordingly, to base synthetic planning entailing an AD of a trisubstituted C=C bond on "Sharpless/Norrby orientations" 16–19 of the substrate and to specify that the sp^2 bonded H-atom shall be in the (most) hindered position (1).

Acknowledgment. The authors thank Dr. Thomas Netscher (DSM, Basel) for donations of (E) - and (Z) -3methylpent-2-en-4-yn-1-ol.

Supporting Information Available. Experimental procedures, characterization data, and copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.