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ABSTRACT

Asymmetric dihydroxylations (“ADs”) of the pentenynyl chlorides (E)- and (Z)-1 or the pentenyne-based ester (Z)-3 in the presence of (DHQ)2-containing
ligands delivered diol stereoisomers (2R,3S)-2, (2R,3R)-2, and (3S,4R)-4, respectively. The ADs of pentenynyl ethers (E)-10 and (Z)-12, respectively, have
the samestereochemical preferenceunder analogous conditions; these reattributions correct previous reports of the contrary. TheSharplessmnemonic
rationalizes all these results implying that each substrate prefers a Sharpless/Norrby instead of a Chapleur orientation in the transition state.

Recently1 we have shown that in the presence of Sharp-
less’ ligands (DHQ)2PHAL (which is responsible for stereo-
control effected by AD-mix R2) or (DHQ)2AQN3 the
1-chlorinated 3-methylpent-2-en-4-ynes (E)- and (Z)-1
are dihydroxylated asymmetrically.4 This furnished chloro-

diols (2R,3S)- and (2R,3R)-2, respectively, in yields of up

to 73% (Scheme 1). Enantioselectivities reached 85% ee

with (E)-1 as the substrate and 91% ee starting from (Z)-1.

The configurational proof in the (E)-serieswas based on an

X-ray structural analysis and the proof in the (Z)-series on

a correlationwith a compound derived from the (E)-series.
Another 1-substituted 3-methylpent-2-en-4-yne, namely

ester (Z)-3, reacted with the same facial selectivity with

Sharpless’ AD-mix R as chloride (Z)-1, proceding via

dihydroxyester (3S,4R)-4 directly5 to the hydroxylactone

(4S,5R)-56 (Scheme 2). The correct configuration of the

latter was not recognized correctly7 before we found that

ester (Z)-6 and AD-mix R gave the identically configured

lactone (4S,5R)-8 via dihydroxyester (3S,4R)-7.8 This was

shown by anX-ray analysis of the derived bromobenzoate
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(4S,5R)-9. A proof of the steric course of the AD reaction

of ester (Z)-3was obtained by an independent synthesis1 of

the same lactone (4S,5R)-5 from the chlorodiol (2R,3R)-2.
Disconcertingly, the stereoselectivity of our AD (E)-1þ

AD-mix R f (2R,3S)-2 differed from the selectivities
reported for ADs of certain ethers, which share an (E)-
configured methylpentenyne with our substrate: AD-mix
Rwasclaimed toconvert ethers (E)-10a-d intodiols (2R,3R)-
11a-d (Scheme 3, top).9 Similarly, our ADs (Z)-1 þ AD-
mix R f (2R,3R)-2 and (Z)-3 þ AD-mix R f (3S,4R)-
4/(4S,5R)-5 had opposite stereoselectivities as the ADs of
several ethers, which share a (Z)-configured methylpente-
nyne with our substrates: AD-mix R allegedly transforms
ethers (Z)-12a and b into dihydroxyethers (2R,3S)-13a and
b, respectively (Scheme4, bottom).10 IncidentallyNakatani
et al. (Scheme 3, bottom) contradicted this (without
recognizing it) when they dihydroxylated the PMB ether
(E)-10d in the presence of AD-mix β and isolated diol

(2R,3R)-11d, which was dextrorotatory.11 According to
Tietze and G€orlitzer the same diol (2R,3R)-11d stemmed
from (E)-10d and AD-mix R but was levorotatory.9

Ancillary findings by Tietze and G€orlitzer increased our
worries. Ethers (E)-12a-d and AD-mix R reportedly gave
the diols (2S,3S)-13a-d (Scheme 3, center);10 this amounts
to a reversal of the asymmetric induction in the ADs (E)-
10a-d þ AD-mix R f (2R,3R)-11a-d9 (Scheme 3, top).
Why an sp-bonded arene moiety in (E)-12a-d instead of
an sp-bonded H-atom in (E)-10a-d should have such an

Scheme 1. AD Reactions of the Methylpentenyne-Based
Chlorides (E)- and (Z)-1

a K3Fe(CN)6 (3.0 equiv), K2OsO2(OH)4 (1.0 mol %), dihydroquini-
dine-based ligand (2.0 mol %), buffer (3.0 equiv each of NaHCO3 and
K2CO3), and MeSO2NH2 (1.0 equiv).

Scheme 2. AD Reactions of the Methylpentenyne-Based Ester
(Z)-3 and the Related Ester (Z)-68

aK3Fe(CN)6 (3.0 equiv), K2OsO2(OH)4 (2.0 mol %), (DHQ)2PHAL
(10 mol %), K2CO3 (3.0 equiv), andMeSO2NH2 (1.0 equiv).

bPrepared
from (Z)-3: [R]D20=-4.9 (c=0.83 in CHCl3); prepared from (2R,3R)-2:
[R]D20 = -5.6 (c = 0.5 in CHCl3).

cK3Fe(CN)6 (3.0 equiv), K2OsO2-
(OH)4 (0.8 mol%), (DHQ)2PHAL (1.6 mol%), K2CO3 (3.0 equiv), and
MeSO2NH2 (1.0 equiv).

Scheme 3. ADReactions of the Methylpentenyne-Based Ethers
(E)-109 and (E)-1210 from the Literature11,12
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Schaumann, E., Eds.; Thieme: Stuttgart, 1995; pp 4547-4598. (e)
Salvadori, P.; Pini, D.; Petri, A. Synlett 1999, 1181–1190. (f) Johnson,
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Colaux-Castillo, C.Pure Appl. Chem. 2002, 74, 107–113. (i) Kolb, H. C.;
Sharpless, K. B. In Transition Metals for Organic Synthesis; Beller, M.,
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(12) The AD reaction of the para-methoxybenzoate of the alcohol,
which underlies the ethers (E)-10a-d, in the presence of AD-mix R gave
a levorotatory triol with 86% ee; the “configuration of the major
enantiomer was assigned tentatively by application of the Sharpless
mnemonic” as (2S,3S), i.e. differently than Tietze’s (2R,3R)-10a-d:
Alvarez, S.; Alvarez, R.; de Lera, A. R. Tetrahedron Asymmetry 2004,
15, 839–846. Our results are analogous and therefore corroborate de
Lera’s conclusion.
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effect was not clear.13 The same structural change seemed
to swap the asymmetric inductions in the AD-mix
R-mediated dihydroxylations of the Csp-arylated ethers
(Z)-12a,b [f (2R,3S)-13a and b, respectively;10 Scheme 4,
bottom] compared to the Csp-unsubstituted ethers (Z)-10a,b
[f (2R,3S)-11a and b, respectively;9 Scheme 4, top].
The pivotal role of Sharpless ADs in organic synthesis4

compelled us to check these matters by correlating selected
Tietze/G€orlitzer diols with ours. We showed both for
ether (E)-10a and ether (Z)-12a,b-i.e., for representative

substrates-that the stereodescriptors of the resulting diols
must be reversed (Schemes 5 and 6, respectively). More-
over we proved the correctness of the stereodescriptors of
diol (2S,3S)-13a15-18 obtained from ether (E)-12a and of
diol (2S,3R)-11a19,20 obtained from ether (Z)-10a.
Chlorodiol (2S,3R)-21 and sodium 4-methoxyphenoxide

in ethanol21 at reflux gave the PMP-containing diol
(2R,3R)-11a (Scheme 5). It was dextrorotatory. Diol 11a
prepared from the PMP ether (E)-10a and AD-mix R was
levorotatory9 and therefore (2S,3S)-11a.22Byanalogy, diols
(-)-11b-c of Scheme 3 should be (2S,3S)-configured, too.

Scheme 4. ADReactions of the Methylpentenyne-Based Ethers
(Z)-109 and (Z)-1210 from the Literature14

Scheme 5. AD Reactions Reassigned I: Proof That (E)-10a and
AD-Mix R React Differently than Published

a [R]D20=þ23.6 (c=1.1 inCHCl3).
bCompatibility of this sense of the

specific rotation with the depicted configuration is excluded by our
work. c [R]D20 = -22.0 (c = 1.0 in CHCl3).

(13) There are AD reactions, however, where remote anisyl groups
modify the extent of enantiocontrol, albeit not its direction: (a) Corey,
E. J.; Guzman-Perez, A.; Noe, M. C. Tetrahedron Lett. 1995, 36, 3481–
3484. (b) Corey, E. J.; Guzman-Perez, A.; Noe,M. C. J. Am. Chem. Soc.
1995, 117, 10805–10816. (c) Corey, E. J.; Noe,M. C.; Guzman-Perez, A.
J. Am. Chem. Soc. 1995, 117, 10817–10824. (d) Corey, E. J.; Noe,M. C.;
Ting, A. Y.Tetrahedron Lett. 1996, 37, 1735–1738. (e) Corey, E. J.; Noe,
M. C. J. Am. Chem. Soc. 1996, 118, 11038–11053.

(14) The AD reaction of the para-methoxybenzoate of the alcohol,
which underlies the ethers (Z)-10a,b, withAD-mixR gave a levorotatory
triol with 56% ee; the “absolute configuration of the major enantiomer
was assigned tentatively by application of the Sharpless mnemonic” as
(2S,3R), i.e. differently thanTietze’s (2R,3S)-12a,b: Alvarez, S.; Alvarez,
R.; de Lera, A. R. Tetrahedron Asymmetry 2004, 15, 839–846. Our
results are analogous and therefore corroborate de Lera’s conclusion.

(15) We proved the steric course of Tietze’s and G€orlitzer’s
transformation9 (E)-12a þ AD-mix R f (-)-(2S,3S)-13a (Scheme 3,
center) by gaining the enantiomeric product (þ)-(2R,3R)-13a by a
Sonogashira coupling between diol (þ)-(2R,3R)-11a (proof of the 3D
structure of the latter: Scheme 5, top) and 1-iodo-2,5-dimethoxy-3,4,6-
trimethylbenzene.18 (2S,3S)-13a (>95% ee) exhibited [R]D20 = -13.5 (c
=1 inCHCl3) whereas (2R,3R)-13a (92% ee) exhibited [R]D20=þ11.4 (c
= 0.3 in CHCl3); i.e., these compounds had inverse rotational powers.

(16) The steric course of the transformation (E)-12b þ AD-mix Rf
(2S,3S)-13b (Scheme 3, center) was established unambiguously by
acetonide formation, desilylation, condensation with (-)-camphanoyl
chloride, and an X-ray structural analysis of the resulting ester.10

(17) Differently than stated10 no proof was provided for the stereo-
selectivity of the transformation (E)-12c þ AD-mix R f (2S,3S)-13c
(Scheme 3, center): (2S,3S)-13c had been converted intowhat was drawn
as the S-enantiomer of 6-(benzyloxy)-2,5,7,8-tetramethylchromane-2-
carbaldehyde in seven steps,10 but this assignment was not corroborated
experimentally.18

(18) (S)-6-(Benzyloxy)-2,5,7,8-tetramethylchromane-2-carbalde-
hyde is dextrorotatory (589 nm, c=5.2 in CHCl3) according to Cohen,
N.; Lopresti, R. J.; Saucy, G. J. Am. Chem. Soc. 1979, 101, 6710–6716.

(19) We proved the steric course of Tietze’s and G€orlitzer’s
transformation10 (Z)-10a þ AD-mix R f (-)-(2S,3R)-11a (Scheme 4,
top) by establishing that the enantiomeric product (2R,3S)-11a
(preparation: Scheme 6, top) was dextrorotatory: (-)-(2S,3R)-11a
(82% ee) showed [R]D20 = -20.0 (c = 1 in CHCl3) while (2R,3S)-11a
(92% ee) showed [R]D20 = þ22.3 (c = 0.37 in CHCl3).

(20) The facial selectivity of the functionalizations of (Z)-10a,b with
AD-mix R (Scheme 4, top9) lacked experimental support. The resulting
diols were Sonogashira-coupled to provide diols9 13a,b with the same
relative configurations as the ones obtained from (Z)-12a,b andAD-mix
R in one step (Scheme 4, bottom10). However, differently than the
authors believed (ref 10 and footnote 2 therein) no specific rotations
were measured on the Sonogashira route (ref 22b). This left the absolute
configuration of these specimens of (-)-ul-11a and (-)-ul-b unproved.

(21) Procedure: Gandolfi, C. A.; Di Domenico, R.; Spinelli, S.;
Gallico, L.; Fiocchi, L.; Lotto, A.; Menta, E.; Borghi, A.; Rosa, C. D.;
Tognella, S. J. Med. Chem. 1995, 38, 508–525.
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(“2R,3R”)-11a should have emerged from the X-ray analysis of crystals
of the monosulfonate derived with (þ)-camphorsulfonyl chloride.9 The
ORTEP plot depicted the compound as 14 (ref 22b, p 72), but the
corresponding valence formula was flawed as 15 (ref 22b; p 70)
and published as such.9 (b) G€orlitzer, J. Dissertation, Universit€at
G€ottingen, 1997.
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Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (b) Sharpless,
K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.;
L€ubben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org.
Chem. 1991, 56, 4585–4588. (c) Reference 2b. (d) Kolb, H. C.;
Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc. 1994, 116,
1278–1291. (e) Vanhessche, K. P. M.; Sharpless, K. B. J. Org. Chem.
1996, 61, 7978–7979. (f) Fristrup, P.; Tanner,D.;Norrby, P.-O.Chirality
2003, 15, 360–368.
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According to Scheme 6 chlorodiol (2S,3S)-21 was con-
verted via its PMP-ether (2R,3S)-11a21 and a Sonogashira
coupling with 1-iodo-2,5-dimethoxy-3,4,6-trimethylben-
zene into the dextrorotatory diol (2R,3S)-13a. Diol 13a
prepared from the arylated PMP-ether (Z)-12a and AD-
mix R was levorotatory10 and hence (2S,3R)-configured.
In summary it has been shown that all heterosubstituted

(E)- and (Z)-methylpentenynes, which have been vic-dihy-
droxylated to date under the influence ofDHQ-containing
ligands are attacked as if preferring a “Sharpless/Norrby
orientation” in any of the Sharpless-mnemonic transition
states23 16-19 (Figure 1) such that steric hindrance in
zone 1, which is (the most) repulsive, is minimized.
With respect to alkenes containing a trisubstituted CdC

bond we reduced the number of “Chapleur oriented”24 AD
substrates by (E)-10a-d and (Z)-12a,b. When/if one does

not accept the revised configuration25 of the diol produced
from isobutyl angelate and AD-mix β,26 this implies a
“Chapleur orientation” 2025 (Figure 1) in the transition
state,27-29 the only AD reaction affecting a “Chapleur
oriented” trisubstituted CdC bond, of which we are aware
may concern an R-alkylidenelactone.30 It seems reasonable,
accordingly, to base synthetic planning entailing anADof a
trisubstituted CdC bond on “Sharpless/Norrby orienta-
tions” 16-19 of the substrate and to specify that the sp2-
bondedH-atom shall be in the (most) hindered position (1).
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Figure 1. Stereoselectivities of ADs of standard substrates with a
trisubstituted CdC bond in the presence of DHQ-containing
ligands (top;DHQD-containing ligands attack fromdownside) and
of isobutyl angelate in the presence of (DHQD)2PHAL (bottom).

Scheme 6. ADReactions Reassigned II: Proof That (Z)-12a and
AD-Mix R React Differently than Published

a [R]D20=þ22.3 (c=0.37 inCHCl3).
b [R]D20=þ13.6 (c=0.33 inCHCl3).

cCompatibility of this sense of the specific rotation with the depicted
configuration is excluded by our work. d [R]D20=-12.6 (c=1.0 in CHCl3).

(24) A “Chapleur orientation” in the transition state of an AD
represents the optimum of maximized bonding in zone 2 andminimized
strain in zone 1.25
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